TuTl

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —
INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Airlift: A Binary Lifter Based on a
Machine-Readable Architecture Specification

Wonkeun Choi

D

TuTl

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —
INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics
Airlift: A Binary Lifter Based on a
Machine-Readable Architecture Specification

Airlift: Ein Binarlifter auf Basis einer
maschinenlesbaren Architekturspezifikation

Author: Wonkeun Choi
Examiner: Prof. Pramod Bhatotia
Supervisor: Martin Fink

Submission Date: 30.05.2025

D

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 30.05.2025 Wonkeun Choi

Acknowledgments

I'd like to thank Martin for what has been easily the most enjoyable project topic
I've had the honor to be a part of. I'm also grateful to Prof. Bhatotia for his trust
and generous support. Without him, I wouldn’t have found my footing in this area or
completed the thesis with such fulfillment.

Thanks to my parents for always being there—and consistently giving the wrong
advice. And thanks to Fabi for moral support.

Abstract

Binary lifting is the process of translating machine code into an intermediate represen-
tation suitable for program analysis and transformation. It is a foundational technique
in both academic research and industrial tooling, but building and maintaining binary
lifters remains complex and error-prone. This thesis presents Airlift, a binary lifter auto-
matically generated from a machine-readable architecture specification. By eliminating
the need for manual lifter development, Airlift significantly reduces implementation
effort and ensures consistency with the formal semantics of the target architecture.

Airlift is integrated into the TrustNoJit system, which applies the proof-carrying
code framework to increase the safety of just-in-time compilation. The lifter translates
AArch64 machine code into AIR, a custom lightweight IR tailored for formal verification,
and serves as a crucial step in enabling static safety checks.

Airlift leverages partial evaluation of instruction semantics via hybrid transpila-
tion: computations involving only values known at lifter runtime, such as instruction
encoding fields, are transpiled into executable code, while semantics dependent on
machine state, such as register values, are emitted as residual AIR code. This approach
significantly reduces the volume and complexity of generated AIR, streamlining the
verification process.

The practical applicability of Airlift is demonstrated by decoding and successfully
lifting all 114 programs in the Sightglass benchmarking suite. Focusing primarily on
correctness, this work compares Airlift’s performance and structural efficiency with a
manually written lifter and identifies potential optimizations for future work.

v

Contents

Acknowledgments
Abstract
1 Introduction

2 Background
21 Binary Lifting
2.1.1 Intermediate Representations
212 Use-Cases v v vttt
22 TrustNoJit (TN]) o o o
221 Assembly Intermediate Representation (AIR)
2.3 AArch64 Architecture
2.3.1 Architecture Specification Language (ASL)

3 Overview

4 Design
41 LexingandParsing
42 AST Analysis
4.3 Decoder Code Generation,
43.1 Lazy Subroutine Transpilation
44 Lifter CodeGeneration e
441 Extension of AIR to Accommodate ASL Semantics
4.4.2 Implementation Overwrites of ASL Subroutines
443 Hybrid Transpilation Approach
444 Basic Block Structuring 0L

5 Implementation
51 ProjectStructure
52 ASLi Integration and Interface Boundary,
52.1 Parser-Only Invocation
52.2 Interface Design and JSON Serialization

O 00 O\ = = W W W

Contents

5.3 AST Structure and Serialization Pipeline 32
5.4 Runtime Placement of Partial Evaluation 33
5.5 Subroutine Transpilation o L 34
5.6 Representation of ASL Data Typesin AIR 35
5.7 Uncertainty with ASL Decoding Match-Case Logic 36
5.8 Transpilation Challenges from Rust’s Type Safety Features 38
5.8.1 Exhaustiveness in Match-Case Logic. 38

5.8.2 Nested Mutable Borrow and InstructionBuilder Access 39

59 Registers and Flags Configuration 39
5.10 FP/SIMD and Other Unsupported Instructions 41
Evaluation 42

6.1 Practical Usability 42
6.1.1 Decoding Coverage and Lifting Robustness (RQ1) 43

6.1.2 Performance Bottleneck in Practical Use (RQ2). 43

6.2 Performance and Structural Inefficiencies 44
6.2.1 Lifting Output Metrics (RQ3) 44

6.2.2 Sources of Inefficiency (RQ4) 48

Future Work 49
7.1 Additional Implementations L 49
72 Optimizations 49
72.1 Loop Optimizations 49

72.2 AIR Code Post-Processing 50

7.2.3 ASL Code Pre-Processing 50

7.24 Delegating Partial Evaluation to Codegen 51

Related Work 52

8.1 Manual Lifter Implementations 52
8.2 Automatic Lifter Generation 52
82.1 MRAS-Based Lifting 53

9 Conclusion 54
Abbreviations 55
List of Figures 57
Bibliography 58

Vi

1 Introduction

Binary lifting is a foundational technique in binary analysis and verification, used to
translate machine code into an intermediate representation (IR) for purposes such as
program analysis [29, 8], symbolic execution [25, 16], binary translation [24, 11, 5],
decompilation [4], and formal verification [31]. It plays a central role in industry tools
for reverse engineering [12] and malware analysis [17], as well as in production-grade
binary instrumentation [7] and verified system deployment [13]. Despite its utility,
writing a binary lifter manually is complex and error-prone, requiring deep knowledge
of the target architecture’s semantics and a significant engineering effort to ensure
correctness and maintainability [8].

Manually implemented lifters such as McSema [6] exemplify this difficulty, relying
on extensive hand-written decoding and translation logic. Other approaches have
attempted to automate aspects of lifter generation: Cross-Architecture Lifter Synthe-
sis [27] and Forklift [2] present novel frameworks for deriving lifters via synthesis
or transformation from existing binaries or IR. However, these systems introduce
complexity and potential for incompleteness due to reliance on symbolic reasoning or
transformation heuristics.

This thesis explores an alternative: automatically generating a binary lifter from a
machine-readable architecture specification (MRAS), and applying it in a real-world
setting. Specifically, we target the TN]J system (Section 2.2), which increases the safety of
just-in-time (JIT) compilation through machine code verification. We introduce Airlift,
a binary lifter generated directly from a formal specification of the AArch64 instruction
set architecture (ISA) [15].

All components of Airlift that depend on the ISA, including instruction decoding and
semantic translation, are generated from the specification. The instruction and operand
decoder is directly transpiled into executable Rust code. Instruction semantics are
partially transpiled into executable code and partially into AIR, the IR custom designed
for use in TNJ. Semantics that do not depend on register values are executed during
lifting time, while register-dependent logic is emitted as IR. This hybrid approach
reduces IR size and simplifies lifting runtime behavior.

We use Arm’s ASL, a formal, machine-readable description of AArch64 instruction
semantics [28]. Decoder logic and computations with values known at lifter runtime,
meaning those that depend only on the instruction encoding, are transpiled into Rust

1 Introduction

and executed during translation. Semantics that depend on runtime state, such as
register or memory values, are translated into AIR. We reuse the lexer and parser
from the existing ASL interpreter (ASLi) project [23]. All other lifting logic and code
generation are implemented from scratch in Rust using standard metaprogramming
libraries. This design makes the system self-contained and easy to integrate into TNJ.
Airlift currently supports integer, memory, and branch instructions. Floating point (FP)
and single instruction, multiple data (SIMD) instructions, which are not relevant to
TNJ, are assigned opaque behavior.

Airlift is evaluated by comparing its output and performance against a manually
implemented lifter developed in a previous thesis for TNJ [10]. Although Airlift does
not aim to outperform hand-written lifters in speed, this comparison helps identify
optimization opportunities. Additionally, we run Airlift on all Sightglass benchmark
programs [1] to validate instruction coverage and semantic correctness in a practical
context.

The core contribution of this work lies in demonstrating that a binary lifter can be
automatically generated from a formal specification and deployed within a verified
execution pipeline. Airlift was developed independently and prior to our awareness of
Lift-Offline [9], a recent system that formalizes a similar approach. While Lift-Offline
presents a theoretical framework and tooling for instruction lifter synthesis, Airlift
serves as a concrete application of this idea in a real-world security-focused system.

The source code for Airlift is available as open source on GitHub.!

Ihttps://github.com/TUM-DSE/airlift

https://github.com/TUM-DSE/airlift

2 Background

2.1 Binary Lifting

Binary lifting is the process of translating machine code into an IR at a higher level of
abstraction, making it suitable for program analysis or transformation. Analyzing raw
binary instructions directly is difficult because they are architecture-specific, densely
encoded, and often rely on implicit side effects. Lifting exposes control flow, data flow,
and memory effects explicitly, allowing higher-level tools to operate on a more abstract
and uniform representation.

While the introduction discussed the broader relevance of binary lifting, this section
presents its technical foundations and use cases in a more structured way. Binary lifting
is widely used in both academic and industrial systems, especially in binary analysis
frameworks [29, 8, 17, 31], symbolic execution engines [25, 16], binary translation
systems [24, 11, 5], binary instrumentation tools [7], decompilers [4, 12], and formally
verified kernels [13].

2.1.1 Intermediate Representations

An intermediate representation (IR) is a machine-independent language that abstracts
away the low-level details of machine code. It serves as a bridge between raw binary
instructions and the tools that analyze or modify them. A well-designed IR captures the
essential semantics of the input code while remaining tractable for automated reasoning
and transformation.

LLVM IR is one of the most widely adopted IR because of its maturity, compre-
hensive tooling, and documentation [14]. Its static single-assignment (SSA) form and
widespread adoption make it particularly useful for compiler optimization and sym-
bolic execution, as it comes with extensive tooling, optimizations, and analysis features
available out of the box. However, LLVM IR was not designed to model certain low-
level behaviors, such as partial register updates, architecturally undefined operations,
or precise memory side effects. This limitation can result in incorrect behavior when
liftting machine code into LLVM IR, especially in security-critical or formally verified
contexts.

To address these limitations, many systems use custom IRs that are tailored to

2 Background

the semantics of machine instructions. Examples include VEX (used in Valgrind and
angr) [19, 25] and BIL (used in BAP) [8], which are explicitly designed to model low-level
behavior in a way that is both accurate and analyzable. This is critical for use cases such
as verification and dynamic analysis. In contrast, AIR (used in TNJ) serves a different
goal: it is designed to be lightweight and simple, with just enough expressiveness to
support machine code verification while avoiding unnecessary complexity.

2.1.2 Use-Cases

Binary lifting enables a wide range of applications. While many of these are outlined
in documentation for tools like McSema [6], they apply more generally across various
platforms:

* Binary Modification and Patching: After lifting a binary into an IR, it becomes
easier to apply transformations such as restructuring control flow, optimizing
performance, inserting runtime checks, or removing unwanted functionality. The
transformed IR can then be compiled back into a new binary.

¢ Symbolic Execution: Engines like KLEE operate on LLVM IR. Lifting a binary
into this format allows symbolic execution of programs even when the original
source code is not available.

* Reuse of IR-based Tooling: Once a binary is lifted into a general-purpose IR,
it becomes compatible with existing tools such as libFuzzer, sanitizers, and
optimization passes. This makes it easier to integrate analysis and testing into
existing workflows.

¢ Binary-Only Analysis: When source code is unavailable, or when compiler
optimizations significantly alter the code’s behavior, analyzing the binary itself is
the only reliable way to understand the program’s true runtime behavior.

¢ Unified Tooling: Using a shared IR for both source and binary code allows
developers to maintain a single suite of analysis tools, reducing development
effort and improving consistency across different types of input.

2.2 TrustNo]Jit (TN])

JIT compilers improve runtime performance by converting high-level code such as
JavaScript or WebAssembly into machine code during execution. However, this opti-
mization introduces significant security risks. The output machine code is typically not

2 Background

| Verifier

A 4

Policy Proof Checker ——> 0/X

S B . § AIR
. JIT Runtime ; ’

; Y Machine Code r 1
Code —»{ JIT Compiler }——E :|—-> Lifter
' ; Proofs LN

Figure 2.1: Workflow of TNJ.

verified, and the JIT compilation process can introduce vulnerabilities that are difficult
to detect at runtime.

This problem is well-documented. In 2023, 9 of the 19 zero-day vulnerabilities
exploited in the wild against web browsers originated from JavaScript engines [26].
Since 2019, approximately 45% of known vulnerabilities in Google’s V8 JavaScript
engine have involved the JIT compiler [20]. These statistics indicate that JIT compilation
remains one of the main attack surfaces in modern browser environments.

TN]J complements existing runtime defenses by applying the proof-carrying code
(PCC) framework [18] to enforce security guarantees for JIT-compiled code. The JIT
compiler must produce a formal proof that its output satisfies a predefined security
policy, which is verified before execution. Only the verifier and the lifter are trusted;
the JIT compiler is treated as untrusted.

Figure 2.1 shows the architecture of TNJ. The JIT compiler receives a high-level
program and a security policy. It compiles the program into machine code and
generates a corresponding safety proof. The verifier receives the machine code and
the proof. It uses a lifter to translate the machine code into AIR, an intermediate
representation designed for verification. The verifier then checks whether the proof
establishes that the lifted code satisfies the given policy. If the verification succeeds, the
machine code is allowed to execute.

This project focuses on the development of the lifter. The lifter translates machine
code into AIR, which is designed to be lightweight and platform-agnostic. AIR exposes
enough semantic information to support verification, while avoiding the complexity
of architecture-specific details. By operating on AIR, the verifier can check that the
machine code adheres to the policy before execution.

2 Background

2.2.1 Assembly Intermediate Representation (AIR)

AIR is a minimal intermediate representation designed specifically for verifying the
safety of machine code generated by JIT compilers. Unlike general-purpose IRs such
as LLVM IR or VEX, AIR is tailored to support formal verification of instruction-level
behavior with minimal complexity. Its design is constrained by the need to statically
check safety properties over low-level code without introducing unnecessary overhead
or architectural dependencies.

AlIR is in SSA form, meaning each variable is assigned exactly once and every variable
is defined before use. SSA form facilitates a wide range of optimizations and program
analyses by making data dependencies explicit. This property simplifies tasks such as
constant propagation, dead-code elimination, and control-flow simplification, which in
turn reduces the complexity of code that undergoes verification or instrumentation.

AIR includes three data types:

* FixedSizelInt, a bounded integer type used to represent register values and
arithmetic results of machine instructions.

® Bool, used to represent condition codes and control-flow decisions.

* Int, an unbounded, signed integer type used for expressing operations whose
semantics, as described in the ASL MRAS, cannot be fully captured with fixed-
width integers alone.

Only FixedSizeInt and Bool were strictly necessary for the purposes of verifying
safety properties in TNJ. However, Int was introduced to ensure that the semantics
described in ASL could be fully represented during the lifting process, even if those
semantics involved arbitrary-precision values that do not appear directly in the target
machine code.

Table 2.1 lists all AIR instructions required to represent the subset of ASL semantics
used in this work. This table illustrates the minimality of the AIR instruction set. The
small size of this instruction set not only simplifies the verifier but also makes AIR
more amenable to formal reasoning.

Figure 2.2 provides an example of AIR code generated from the ASL semantics of
the csel instruction. This example demonstrates how AIR captures the data flow and
control flow of an instruction while maintaining verifiability and semantic transparency.
From the listing, it is also evident how basic blocks are defined and how data is passed
explicitly as block parameters. This design allows control-flow joins to be expressed
cleanly in SSA form and is sufficient to represent all control-flow structures encountered
in ASL instruction semantics.

2 Background

Table 2.1: Overview of AIR instructions (FSI = FixedSizeInt and BB = BasicBlock).

Instruction Description Input Output
add Add unbounded integers Int, Int Int
sub Subtract unbounded integers Int, Int Int
mul Multiply unbounded integers Int, Int Int
div Divide ubounded integers Int, Int Int
modulo Modulo on unbounded integers Int, Int Int
wrapping_add Add FSIs FSI, FSI FSI
wrapping_sub Subtract FSIs FSI, FSI FSI
umul Unsigned multiply FSIs FSI, FSI FSI
imul Signed multiply FSIs FSI, FSI FSI
udiv Unsigned divide FSIs FSI, FSI FSI
idiv Signed divide FSIs FSI, FSI FSI
modulo Modulo on FSIs FSI, FSI FSI
1shl Logical shift left FSI, Int FSI
lshr Logical shift right FSI, Int FSI
ashl Arithmetic shift left FSI, Int FSI
ashr Arithmetic shift right FSI, Int FSI
and Logical AND FSI, FSI FSI
or Logical OR FSI, FSI FSI
xor Logical XOR FSI, FSI FSI
bitwise_not Bitwise NOT FSI FSI
zext Zero-extend value FSI FSI
sext Sign-extend value FSI FSI
from_bool Convert Bool to FSI (il) Bool FSI
from_il Convert FSI (il) to Bool FSI Bool
signed_from_bits Convert FSI as signed to Int FSI Int
unsigned_from_bits Convert FSI as unsigned to Int FSI Int
to_bits Convert Int to FSI Int FSI
load Load from memory FSI FSI
store Store to memory FSI, FSI -
read_reg Read from register Reg FSI
write_reg Write to register FSI, Reg -
icmp Compare values FSI, FSI, CmpTy Bool
jump Jump unconditionally BB -
jumpif Jump conditionally BB, BB, Bool -
dynamic_jump Jump to an address FSI -
opaque Create an opaque value - FSI
trap Trap unconditionally - -

7

2 Background

entry:
v0 = i64.read_reg
vl = i64.read_reg
v2 = il.read_reg

v3 = bool.icmp.il.eq v2, Ox1
jumpif v3, block_0, block_1
block_0O:
jump block_2(v0)
block_1:
jump block_2(v1)
block_2(v4: i64):
write_reg.i64 v4,

Figure 2.2: An example AIR code generated for the csel instruction.

2.3 AArch64 Architecture

AArch64 is the 64-bit execution mode of the Arm architecture [15]. It has become widely
adopted in mobile, embedded, and increasingly in server environments, owing to its
regular instruction encoding, straightforward register model, and reduced instruction
set design. These architectural choices facilitate efficient hardware implementations
and simplify tasks such as code generation, static analysis, and formal verification.

All instructions in AArch64 are 32 bits wide. The architecture defines 31 general-
purpose registers (x0 - - - x30). The encoding value 31 is used to represent either the zero
register or the stack pointer, depending on context. A separate set of 32 FP and SIMD
registers (vO - - - v31), introduced by the Neon architecture extension, are not relevant to
this project.

The ISA supports several addressing modes, including immediate offsets, register
offsets, and scaled register-based indexing. Instruction classes include arithmetic and
logical operations, load/store operations (including exclusive memory accesses and
paired loads/stores), and a variety of control-flow instructions such as conditional
branches, indirect jumps, and exception-generating instructions.

Figure 2.3 shows a short sequence of AArch64 assembly to demonstrate the syntax
and structure of the ISA. This code demonstrates basic data movement, arithmetic,
condition flag usage, and branching. Despite the visual simplicity, AArch64 instructions
often carry nontrivial semantics, especially when interacting with condition flags and
control flow.

Many instructions in AArch64 have multiple encodings or aliases. Some instructions

2 Background

start:
mov x0, #5
mov x1, #10
add x2, x0, x1
cmp x2, #15 // sets condition flags
b.eq match // reads condition flags
mov x3, #0
b end
match:
mov x3, #1
end:

Figure 2.3: An example AArch64 code snippet.

affect condition flags stored in the PSTATE register (N, Z, C, V), which are then
consumed by conditional branches and comparisons. These implicit dependencies
introduce additional complexity when analyzing instruction sequences.

AArch64 was chosen as the target architecture for this project for several reasons.
It is one of the most widely used 64-bit ISAs in practice and one of the few with
a complete, publicly available MRAS. Another example of such a specification is
RISC-V’s Sail-based formal model [3], while an x86 specification is still under active
development [22]. The focus on a single ISA is a deliberate design decision: building a
functional binary lifter for just one ISA is already a significant workload, particularly
within the six-month timeframe of a master’s thesis and without extensive expertise
in compiler development. However, the approach presented in this work is general
and can be extended to other ISAs with MRASs, including RISC-V and x86, with
appropriate modifications to the parser and translation pipeline.

2.3.1 Architecture Specification Language (ASL)

ASL is a formal language used to define the behavior of instructions in an MRAS [21].
It is designed to serve multiple purposes:

¢ Documentation: ASL is intended to be human-readable and serves as the official
specification of the ISA.

¢ Test Generation: It assists in writing test programs to check actual hardware
behavior against expected semantics.

2 Background

¢ ISA Design: It helps in modeling and testing the behavior of proposed ISA
features during the design process.

¢ Formal Verification: It provides a formal basis for verifying the correctness of
hardware and binary analysis tools.

For many of these use cases, it is important that the specification is executable.
Subsection 2.3.1 introduces the ASLi, a tool for executing ASL-defined instruction
semantics.

ASL is written as an imperative language to align with the mental model of most
programmers. It includes support for unbounded integers, infinite-precision reals,
fixed-size bitvectors, booleans, enumerations, and record types (similar to structs).
These data types are sufficient to describe complex instruction behavior in a precise
and analyzable way.

To demonstrate the structure of ASL and the layout of its machine-readable specifi-
cation, we use the csel instruction as a running example. We selected csel because
it is semantically simple while still showcasing key language features such as field
extraction, conditional logic, and subroutine calls.

The ASL MRAS is split across several files, each with a different role:

® arch_decode.asl defines the top-level instruction decoding logic. It consists of
nested match/case statements that determine which instruction is being decoded
based on specific bit fields in the 32-bit instruction. Figure 2.4 shows how the
opcode of a csel instruction is extracted. Once the instruction is identified,
decoding continues into the next file.

* arch_instrs.asl defines operand decoding logic and instruction semantics. Each
instruction definition includes a decode block that extracts operand fields from
the binary encoding and an execute block that describes its behavior during
execution. Figure 2.5 shows the decode and execute blocks for csel. In this
example, register reads and writes are modeled as array accesses to X[], and
control logic such as ConditionHolds () and NOT() is abstracted into subroutines
for readability.

® arch.asl contains subroutine definitions. It is the largest file in the specification
by content, as it centralizes most of the reusable logic, including functions like
ConditionHolds () that are referenced by decode blocks and execute blocks in
arch_decode.asl and arch_instrs.asl.

* prelude.asl defines the lowest-level built-in operations such as NOT(). These
subroutines are dependent on the simulation or verification backend and are
often transpiled directly to equivalent operations in the target language.

10

2 Background

* regs.asl lists architectural registers and describes their structure, including
tield-level breakdowns of bit segments.

* memory.asl defines logic related to memory reads and writes.

¢ Other files, such as debug.asl and interrupts.asl, describe other parts of the
architecture, but they were not relevant to the implementation of Airlift and had
minimal or no interaction during development.

__decode A64
case (29 +: 3, 24 +: 5, 0 +: 24) of

when (_, , L) =
case (
31 +: 1, 30 +: 1, 29 +: 1, 28 +: 1, 25 +: 3,
21 +: 4, 16 +: 5, 10 +: 6, 0 +: 10
) of

when (_, _, _, s s —s —s _) =>// csel
__field sf 31 +: 1
__field op 30 +: 1
__field S 29 +: 1
__field Rm 16 +: 5
__field cond 12 +: 4
__field op2 10 +: 2
__field Rn 5 +: 5
__field Rd 0 +: b
case (sf, op, S, op2) of
when (s s s)
=> __encoding aarch64_integer_conditional_select

Figure 2.4: Instruction decoding logic of csel in aarch_decode.asl.

ASL interpreter (ASLi)

ASL was designed to be an executable specification, and Arm provides an open-
source implementation of an interpreter, referred to as ASLi, that can lex, parse, and
evaluate ASL code [23]. ASLi supports both interactive interpretation and ahead-of-time

11

2 Background

__instruction aarch64_integer_conditional_select
__encoding aarch64_integer_conditional_select
__instruction_set A64
__field sf 31 +: 1
__field op 30 +: 1
__field Rm 16 +: 5
__field cond 12 +: 4
__field 02 10 +: 1
__field Rn 5 +: 5
__field Rd 0 +: 5
__opcode ’xx011010,,100xxxxx xxxx0XXX XXXXXXXX’

__guard TRUE

__decode
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = Ulnt(Rm);
integer datasize = if sf == ’1’ then 64 else 32;
bits(4) condition = cond;
boolean else_inv = (op == ’17);
boolean else_inc = (02 == ’17);

__execute

bits(datasize) result;

X[nl;
X [m];

bits(datasize) operandl

bits(datasize) operand?

if ConditionHolds(condition) then
result = operandil;

else
result = operand2;

NOT (result);
result + 1;

if else_inv then result

if else_inc then result

X[d] = result;

Figure 2.5: Operand decoding logic and instruction semantics of csel
aarch_instrs.asl.

in

12

2 Background

compilation into C. This makes it a valuable tool for simulating instruction behavior
and prototyping ASL-based workflows.

ASLi is implemented in OCaml and relies on the Ott tool for defining ASL’s grammar
and type system. Ott enables the definition of programming languages in a high-level,
machine-readable format and generates parser and type-checker code accordingly. In
the case of ASL, it produces the OCaml modules needed to lex, parse, and type-check
the specification.

While ASLi provides a foundation for executing ASL code, it is currently in alpha
and lacks full coverage of the ASL specification. Several known bugs and missing
features limit its usability as a general-purpose simulator or conformance tool. It is not
intended to serve as a fully validated architectural reference simulator.

In this project, ASLi was used selectively. Although the interpreter as a whole is
incomplete and not thoroughly tested, its low-level components such as the lexer,
parser, and type checker have proven reliable. These components were reused in the
early stages of Airlift’s transpilation pipeline to parse and type-check ASL code before
generating Rust code and AIR.

13

3 Overview

Binary lifting is a central technique in many binary analysis frameworks, including
decompilers, symbolic execution engines, and formal verification systems, as discussed
in Section 2.1. However, writing a binary lifter by hand remains a labor-intensive
and error-prone process. It requires in-depth understanding of instruction semantics,
decoding logic, and IR generation. Even small implementation errors can lead to
incorrect analysis results downstream, which is particularly problematic in security-
and verification-sensitive applications.

Despite these challenges, binary lifters are a critical component of many widely used
systems. However, their manual construction does not scale across ISAs. Each new
ISA or ISA extension typically requires a fresh reimplementation of decoding logic and
instruction semantics, introducing opportunities for bugs and increasing long-term
maintenance costs.

At the same time, MRASs are becoming more common. AArch64 has ASL, a formally
specified and parsable representation of its instruction semantics [28]. RISC-V uses
Sail [3], and an MRAS for x86 is also under development [22]. These specifications
encode the same information lifters require, but are underused in practice for lifter
generation. There is a clear opportunity to reduce manual engineering effort by
automatically generating lifters directly from an MRAS.

This gap is particularly visible in the TNJ project. TN]J requires a formally verified
lifting pipeline that converts machine code into a verification-friendly IR, enabling
proof-carrying code checks. Unlike most systems using binary lifters, TNJ cannot
rely on runtime instrumentation or informal semantics. Instead, it needs a statically
checkable and trustworthy translation from binary code to AIR.

Airlift addresses this need. It demonstrates how a lifter can be automatically gener-
ated from ASL, eliminating the need to reimplement decoding and semantics manually.
The resulting lifter emits AIR, a minimal IR designed for proof-carrying verification.
This pipeline shows that MRAS-driven lifting is not only possible, but practical for use
in formally secure systems.

The design of Airlift was guided by the following goals:

¢ High Instruction Coverage: The system aims to support a broad subset of
AArch64 instructions, prioritized based on the needs of TNJ. Focus is placed

14

3 Owverview

AArch64
L Airlift I
Decoder
P, lnstructlon. > Executable Logic
; . N : Decode Logic]
: ASLi : : Decode Transpiler
D, L : Operand
! | Evaluator | DGCOdi Logic
............. K Lifter
Parser '——V AST ~>[AST Analyzer - > Executable Logic
. Lift Transpiler
: v ; I-_[+ AIR Generation
; Lexer : : Instruction '
: : 5 Semantics \) i
. 3 2 Y S "
A 4
ASL MRAS AIR

Figure 3.1: Workflow of Airlift.

on integer, memory, and control-flow instructions that are most relevant to the
verification pipeline.

¢ Correctness as the Primary Objective: The main goal of this project is to ensure
semantic correctness. Lifted AIR code must accurately preserve the behavior of
AArch64 instructions as described in the MRAS. This priority guides all design
and implementation decisions.

¢ Performance and Optimization Out of Scope: Runtime performance and system-
atic optimizations were not in scope for this thesis. Correctness was prioritized
due to the limited timeframe and complexity of the task. However, the main
design decision for the code generator already reduces the number of generated
AIR instructions significantly. Additional possible optimization strategies are
documented in Chapter 7.

Figure 3.1 shows a simplified model of the main components of Airlift. While many
implementation details are omitted, the overall pipeline can be abstracted into the
following stages:

e MRAS AST Extraction: As described in Subsection 2.3.1, Airlift reuses the lexer,

15

3 Owverview

parser, and typechecker provided by ASLi to extract the abstract syntax tree (AST)
of the entire AArch64 MRAS. This parsed and typed AST serves as the input to
the rest of the pipeline.

¢ Code Generation: The goal of this stage is to generate all parts of the decoder
and lifter that depend on the architecture specification. This comprises most
of the decoder and lifter logic, with the exception of some manually written
skeleton code. The main components of the MRAS AST used here include the
instruction decode logic, operand decoding logic, and instruction semantics,
examples of which were presented in Subsection 2.3.1. Other AST components
are also processed by the AST analyzer but are not shown in the figure for
simplicity.
Because decoding and lifting require fundamentally different translation strate-
gies, Airlift uses two separate transpilers for these tasks:

— Decoder transpilation: The decode transpiler converts instruction decode and
operand decode logic into executable Rust code that becomes the core of the
decoder.

— Lifter transpilation: The lift transpiler translates instruction semantics into
code that emits AIR. Not all semantics need to be lifted directly; Airlift
supports partial evaluation, allowing semantics independent of the runtime
state to be executed by the lifter itself. As a result, the transpiler outputs
both executable logic and AIR generation code.

¢ Lifting: Once the decoder and the lifter have been generated, Airlift can translate
AArch64 machine code into AIR in the same manner as a manually written binary
lifter.

The design and logic behind each of these stages are described in detail in Chapter 4.
Chapter 5 presents the corresponding implementation, including technical decisions
and code-level mechanisms that realize this pipeline.

16

4 Design

4.1 Lexing and Parsing

To avoid reimplementing the extensive and evolving parsing infrastructure for ASL,
we reuse the lexer, parser, and typechecker from the upstream ASLi, Arm’s reference
implementation. This decision ensures compatibility with the original specification and
eliminates a major source of potential bugs, allowing us to focus on the lifter design
itself. We treat the parser as a black-box frontend that produces a typed ASL AST,
which serves as the sole input to subsequent analysis and generation stages.

4.2 AST Analysis

The AST analyzer traverses the typed ASL AST and extracts all information relevant for
decoder and lifter generation. This includes constants, enumerations, structured record
types, subroutines, instruction decode logic, operand decode logic, and instruction
semantics. These components are placed into internal data structures tailored for
efficient downstream processing.

¢ Constants and Enums: used to resolve symbolic expressions and control flow
conditions.

* Records: represent structured types such as memory descriptors or fault meta-
data.

* Subroutines: reusable code blocks that may be invoked from decode logic,
instruction semantics, or both. There are two kinds of subroutines: functions,
which return a value, and procedures, which do not. Each subroutine is analyzed
to determine its dependencies and transpiled by either the decode transpiler, the
lift transpiler, or both accordingly.

¢ Instruction Decode Logic and Operand Decode Logic: provide the necessary
information to generate executable code for instruction decoding.

¢ Instruction Semantics: represent the core behavior of each instruction and serve
as the input to the lifter code generator.

17

4 Design

The output of this stage is a collection of relevant AST nodes and minimal associated
metadata, organized into internal data structures for later use by the code generation
stages. Most elements are stored without transformation, preserving their original
structure for deferred handling. Limited processing is applied only where necessary,
such as indexing enumerations by type or variant name, to enable efficient access.
The analysis phase itself remains lightweight and deliberately decoupled from code
generation logic, ensuring a clean separation of concerns.

4.3 Decoder Code Generation

The generated decoder is essentially a direct transpilation of the instruction and operand
decode logic from the MRAS into executable code. Here, “executable code” refers
specifically to logic that is fully evaluated during lifter runtime, without generating
any AIR code. This absence of generated AIR code is what sets the decode logic
transpilation process apart from the transpilation of instruction semantics in lifter
generation. In decoder generation, all logic is resolved up front, and no part of the
decoding process is lifted into AIR. In contrast, lifter generation does not simply
transpile all logic to AIR code. Instead, some lifting logic is transpiled to executable
code, as in decoder generation, while the rest is transpiled to AIR code. The details of
this hybrid transpilation process are described in Subsection 4.4.3.

Figure 2.4 illustrates the general structure of instruction decode logic in the MRAS,
while Figure 2.5 shows the operand decode logic for the csel instruction as a concrete
example.

To generate the decoder, we recursively traverse the AST of the instruction and
operand decode logic in semantic order. For each construct encountered, we emit a
corresponding construct in the target language, resulting in a one-to-one semantic
transpilation. This approach ensures that the generated code closely mirrors the logic
of the original specification, preserving its structure and behavior.

4.3.1 Lazy Subroutine Transpilation

As shown in the decode block of the csel instruction in Figure 2.5, subroutine calls,
such as the call to ConditionHolds (), may appear within the decode logic. Unlike
constants, enumerations, and records, which are transpiled in full at the beginning of
the pipeline, subroutines are transpiled on demand.

When the decode transpiler encounters a subroutine call in the decode logic, it first
checks whether the corresponding implementation has already been generated. If not,
it recursively transpiles the subroutine definition, including any nested subroutine calls

18

4 Design

it may contain. In the case of ConditionHolds (), this means resolving and generating
the function body before continuing with the outer decode logic.

This lazy transpilation strategy avoids the need to implement full ASL coverage
upfront. Only subroutines that are reachable from the decode logic of supported
instructions are transpiled. This allows the system to ignore unsupported constructs
gracefully while remaining modular and extensible for future extensions of the instruc-
tion set.

4.4 Lifter Code Generation

The lifter is responsible for translating decoded instructions into a verification-friendly
IR. While the decoder’s task is to extract the instruction opcode and field values
from machine code, the lifter takes these decoded fields and produces AIR code that
explicitly models the instruction’s semantics. In other words, the decoder outputs
concrete information about the instruction, such as which operation it represents and
its operand values, while the lifter generates a sequence of AIR statements that describe
how the instruction affects the machine state. An example of the instruction semantics
handled by the lifter is shown in Figure 2.5 for the csel instruction.

In a naive but fully functional approach, the lifter could transpile all instruction
semantics directly into AIR code, representing every computation as part of the output
IR. While correct, this strategy is inefficient, as it forces later verification and analysis
tools to reason about logic that could have been resolved earlier. To improve efficiency,
Airlift uses a hybrid approach. Any logic that can be determined during lifter runtime,
meaning logic that does not depend on machine state such as register or memory
contents, is eagerly evaluated and transpiled into executable code. Logic that does
depend on machine state is transpiled into AIR generation code, which emits explicit
AIR instructions for symbolic execution and verification. This selective strategy enables
partial evaluation of the ASL semantics, reducing the size and complexity of the
resulting IR while ensuring correctness. The hybrid transpilation model is described in
more detail in Subsection 4.4.3.

4.4.1 Extension of AIR to Accommodate ASL Semantics

To support the semantics expressed in ASL, the AIR language was extended in several
ways. First, AIR was augmented with the new type Int, which represents unbounded
integers, along with basic arithmetic operations over this type. These include addition,
subtraction, multiplication, and division. Additionally, conversion operations were
introduced between Int and FixedSizeInt, allowing both types to interoperate as
needed.

19

4 Design

Second, support for arbitrary fixed-size bitvectors was introduced. Originally, AIR
supported only a limited set of bit sizes: 8, 16, 32, 64, and 128 bits. To accommodate
ASL'’s use of bitvectors of any size, the FixedSizeInt type was generalized to support
arbitrary widths from 1 to 128 bits. This enhancement allows AIR to directly represent
the width-precise semantics specified in the ASL source, without requiring further
approximation or re-encoding.

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x[shift+N-1:shift];
carry_out = extended_x[shift-1];
return (result, carry_out);

(a) Original ashr implementation.

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
if shift >= N then

if x[N-1] == then
result = Replicate(, N
carry_out = ;
else
result = Replicate(, D
carry_out = 5
else

result = x >> shift; // arithmetic shift
carry_out = x[shift-1];
return (result, carry_out);

(b) Overwritten ashr implementation.

Figure 4.1: Example replacement of a subroutine with dynamic typing.

4.4.2 Implementation Overwrites of ASL Subroutines

Some subroutines defined in the MRAS cannot be used directly in Airlift for two main
reasons. First, some subroutines are not relevant in the context of TNJ. For example,
exception-related subroutines are unnecessary because exception handling does not

20

4 Design

affect correctness for this use case; these were replaced with stubs that do not modify
architectural state. Second, AIR does not support dynamic typing, so all bit widths
must be known at lifter generation time. However, some ASL subroutines rely on
dynamic typing by computing bitvector lengths at runtime. This is incompatible with
the requirements of Airlift.

To address these issues, we selectively overwrite or replace the problematic subrou-
tines with hand-written implementations. For exception handling, we use no-op stubs.
For subroutines that require dynamic typing, we provide new implementations that
explicitly handle all relevant edge cases using fixed-width logic. This applies only to
arithmetic shift right, logical shift left, and logical shift right. The replacements preserve
the original semantics while ensuring compatibility with AIR.

Figure 4.1 shows the original and replacement versions of the ASR_C subroutine. The
replacement version avoids dynamic sizing by covering the full range of shift values
and using only fixed-width operations, which are fully compatible with AIR.

4.4.3 Hybrid Transpilation Approach

This subsection explains how Airlift distinguishes between instruction semantics that
can be evaluated during lifter runtime and those that must be lifted into AIR. The lift
transpiler uses this separation to perform partial evaluation wherever possible, while
preserving correctness by delegating machine-state-dependent logic to AIR.

We begin by introducing a few terms used in this thesis to classify variables and
control-flow scopes during transpilation:

* Residual Variables: Variables whose values depend on the machine state, such
as register or memory contents. These variables must be lifted into AIR.

¢ Static Variables: Variables whose values can be fully resolved during lifter
runtime. These can be evaluated directly and are not lifted.

* Residual Scopes: Control-flow scopes whose execution depends on machine
state. Whether or not these scopes are executed cannot be determined during
lifter runtime.

* Static Scopes: Control-flow scopes whose execution is fully determined by values
available during lifter runtime. Note that static scopes may still contain residual
variables. The distinction is based solely on whether the control-flow decision
to enter the scope depends on machine state, not on the types of variables used
within it.

21

4 Design

Algorithm 1 Variable promotion rule for binary operations

function BinarYOr(o, a, b)
if ISRESIDUALVAR(a) or ISRESIDUALVAR(D) then
if IsStaTICVAR(2) then
a + PROMOTETORESIDUALVAR ()
end if
if IsSTATICVAR(D) then
b < PROMOTETORESIDUALVAR(D)
end if
return EMiTAIROP(0, 4, b)
else
returna o b > Evaluate during lifter runtime
end if
end function

Residual Variables

The definition of residual variables is straightforward, but we introduce a step-by-step
approach for promotion in Algorithm 1 to clarify the decision process. Whenever a static
variable is used in an operation with a residual variable, the result of that operation
is also treated as residual. This is conceptually similar to constant propagation in
compilers, where expressions that depend solely on constants are evaluated at compile
time. In Airlift, partial evaluation is performed during lifter execution for any logic
that depends only on known values, leaving only machine-dependent logic to be lifted.

Figure 4.2 shows the implementation of the ConditionHolds() function, which is
invoked by the instruction semantics of csel. The variable result in this example
illustrates the concept of variable promotion. As shown in Figure 2.5, the argument
condition passed to this function is a static variable because its value is not derived
from machine state. Therefore, the parameter cond in ConditionHolds () is also a static
variable.

Within the function body, if cond[3:1] equals *111°, then result is assigned the
constant value TRUE, and thus remains a static variable. However, for all other cases,
result is defined in terms of the PSTATE register, which is part of the architectural state.
As a result, result becomes a residual variable, and any operation that uses it is also
treated as residual. Furthermore, since this variable is returned from the function, any
use of its return value outside the function will likewise be marked as residual.

22

4 Design

boolean ConditionHolds(bits(4) cond)
case cond[3:1] of

when result = (PSTATE.Z ==)
when result = (PSTATE.C ==)
when result = (PSTATE.N ==)
when result = (PSTATE.V ==);
when result = (PSTATE.C == && PSTATE.Z ==)
when result = (PSTATE.N == PSTATE.V);
when result = (PSTATE.N == PSTATE.V && PSTATE.Z ==)
when result = TRUE;
if cond[0] == && cond != then
result = !result;

return result;

Figure 4.2: Example static and residual variables.

Residual Scopes

Airlift handles most statements in residual scopes and static scopes in a uniform manner.
However, two types of statements require special treatment when they occur within a
residual scope: variable assignments and return statements.

Figure 4.3a revisits the instruction semantics of the csel instruction, which illustrates
why variable assignments in residual scopes must be translated to AIR rather than
executed directly. As discussed earlier, the return value of the ConditionHolds()
function is likely a residual variable because it depends on machine state. Assuming
this is the case, the predicate of the outer if-statement becomes residual, which in turn
means that both the then and else blocks are residual scopes.

Since the lifter cannot determine at runtime which branch will be taken, it must
handle both. Executing both branches would result in assignments to the result
variable overwriting each other, which compromises correctness. Alternatively, lifting
the entire conditional into AIR avoids this issue but sacrifices the benefits of partial
evaluation. For example, the subconditions else_inv and else_inc are static variables
and could be evaluated during lifter execution, effectively collapsing the branches of
the inner if-statements. Promoting them unnecessarily would increase the complexity
of the generated AIR.

To handle such cases, we present the rules for variable assignments in residual
and static scopes as shown in Algorithm 2. In static scopes, assigning and reading

23

4 Design

Algorithm 2 Handling variable assignments in residual scope

procedure AssiGNVARINSTATICSCOPE(var_name, value)
VAR (var_name) < value > Assign to the lifter runtime variable
end procedure

function GETVARINSTATICSCOPE(var_name) return VAR(var_name)
end function

procedure AssiGNVARINRESIDUALSCOPE(var_name, value, assigns)
if IsStaTICVAR(value) then
value < PROMOTETORESIDUALVAR (value)
end if
assigns[var_name] < value
end procedure

function GETVARINRESIDUALSCOPE(var_name, assigns_stack)
for all assigns in assigns_stack (innermost to outermost) do
if var_name € assigns then
return assigns[var_name]
end if
end for
return VAR (var_name)
end function

procedure ExiTRESIDUALSCOPE(branches)
assigned <— UNIONOFASSIGNED VARSACROSSBRANCHES(branches)
declared < VARSDECLAREDINBRANCHES(branches)
params <— assigned \ declared
ORDERCONSISTENTLYACROSSBRANCHES(params)
EmiTBLockPARAMS(params)

end procedure

procedure ENTERNEXTBLOCK(params, outer_scope_residual, assigns)
if Not(outer_scope_residual) then
for all (var_name, value) € params do
VAR(var_name) < value
end for
else
for all (var_name, value) € params do
assigns[var_name] < value
end for
end if
end procedure

24

4 Design

variables is straightforward: the lifter directly writes to and reads from runtime
variables during execution. In contrast, assignments in residual scopes are emulated
rather than executed immediately. Here, “emulated” means the lifter keeps track of
variable-value pairs without directly modifying the variables during lifter runtime. The
actual assignment only materializes in the generated AIR, where assignment values
from different branches can be merged as control flow converges.

__execute
bits(datasize) result;
bits(datasize) operandl

X[nl;

bits(datasize) operand2 = X[m];

if ConditionHolds(condition) then
result = operandl;

else
result = operand2;
if else_inv then result = NOT(result);

if else_inc then result = result + 1;
X[d] = result;

(a) ASL instruction semantics for csel.

entry:
v0 = i64.read_reg
vl = i64.read_reg

jumpif v3, addr_O_block_0, addr_O_block_1
addr_0O_block_O:

jump addr_0_block_2(v0)
addr_O_block_1:

jump addr_0_block_2(v1)
addr_0O_block_2(v4: i64):

write_reg.i64 v4,

(b) Generated AIR code for csel x0, x1, x2, <cond>.

Figure 4.3: Example variable assignments in residual scope.

To emulate variable assignments, Airlift maintains an assigns map for each residual
scope. When a variable is assigned a new value inside a residual scope, the assignment

25

4 Design

is recorded in the corresponding assigns map instead of being applied to the variable
itself. When a variable is read from within a residual scope, the system first consults
the assigns maps, beginning with the innermost scope and proceeding outward. If
no assignment is found in any scope, the value of the variable from the runtime
environment is used.

At the end of a residual scope, all variables that were assigned new values across
any control-flow branch are passed to the next basic block as block parameters. At the
beginning of this block, the way these parameters are handled depends on the nature
of the surrounding scope. If the outer scope is a static scope, the block parameters are
directly assigned back to the corresponding static variables. If the outer scope is also
residual, the block parameters are instead recorded in that scope’s assigns map as new
emulated assignments.

Figure 4.3b shows the simplest example of a residual AIR code produced from
emulated variable assignments in a residual scope.

integer HighestSetBit(bits(N) x)
for i = N-1 downto O
if x[i] == then return i;
return -1;

Figure 4.4: Example return statement in a residual scope.

The only other type of statement that requires differentiated handling between
residual and static scopes is the return statement. Figure 4.4 shows an example
function, HighestSetBit (), in which a return statement is located inside a conditional
that may depend on machine state.

If the parameter x is a residual variable, then the condition x[i] == 1’ becomes
machine-state-dependent. As a result, the then block containing the return statement
must be treated as a residual scope. Furthermore, since the outer for-loop iterates over
N different indices, each with the potential to take a distinct return path, the lifter must
be able to handle multiple possible return values and control-flow exits.

To manage this complexity, the lifter must generate AIR that converges all these
return paths into a single return point. This return point receives the potential return
values as block parameters and ensures that only the correct value, based on the
machine state, is ultimately used.

Algorithm 3 presents the logic for handling return statements that arise in residual
scopes. When a return is encountered in such a scope, it signifies that the decision to
return is not known at lifter runtime. As a result, a dedicated return block is created
in AIR, and all subsequent return statements, whether they occur in static scopes

26

4 Design

or in residual scopes, must also jump to this block. If no residual return has been
encountered, return statements in static scopes are handled normally by returning
directly from the lifter runtime function.

Algorithm 3 Handling return statements in residual scope

procedure HANDLERETURNINRESIDUALSCOPE(return_value, has_return_block)
if Not(has_return_block) then
CREATERETURNBLOCK()
has_return_block < TRUE
end if
if IsStATICVAR(return_value) then
return_value < PROMOTETORESIDUALVAR (return_value)
end if
EmrtJumPTORETURNBLOCK(return_value)
end procedure

procedure HANDLERETURNINSTATICSCOPE(return_value, has_return_block)
if Not(has_return_block) then
ReTURN(return_value) > Return from the lifter runtime subroutine
else
if IsStATICVAR(return_value) then
return_value < PROMOTETORESIDUALVAR(return_value)
end if
EmMrtJumPTORETURNBLOCK(return_value)
end if
end procedure

procedure PROCESSRETURNBLOCK(return_params)
merged_return <— MERGERETURNVALUES(return_params)
RETURN(merged_return) > Return from the lifter runtime subroutine
end procedure

To ensure consistent control-flow handling, Airlift creates a dedicated AIR block
corresponding to a particular function the first time a return is encountered within a
residual scope in that function. This block serves as a target for all subsequent return
statements. Once this return block has been created, every following return, regardless
of the type of scope in which it appears, jumps to this block instead of returning directly.
In cases where a return statement is located in a static scope and no residual return has
been encountered earlier, the lifter simply returns the value in the standard way.

At the end of the function, after all appropriate return statements have jumped to

27

4 Design

the dedicated return block, the lifter merges all block parameters (which represent
the possible return values across different control-flow paths). The merged residual
variable is then returned from the lifter runtime function.

Variable assignments and return statements are the only kinds of statements that
require distinct handling between static and residual scopes. All other statements,
including subroutine calls, are treated uniformly. This uniformity is possible because
any side effects that occur within subroutines, such as register writes, memory writes,
assertions, or exceptions, are always lifted into AIR and never executed during lifter
runtime. As a result, subroutines behave as if they are free of side effects from the
perspective of the lifter and can be handled in the same manner regardless of the
surrounding scope.

4.4.4 Basic Block Structuring

Airlift uses a two-pass strategy to resolve block labels during the lifting process. This
approach is inspired by the manually written lifter, which used a similar analysis for
instruction-level control flow [10]. However, while the manual lifter could hardcode
all intra-instruction jump labels in advance, Airlift generalizes this logic to handle not
only inter-instruction jumps but also jumps within instruction semantics, which are
discovered dynamically during lifting.

During lifting, jumps can target both forward and backward locations. For backward
jumps, the lifter may encounter a jump to a location that has not yet been processed,
making it unclear whether a block label is needed there. A naive solution would be to
insert a block label before every instruction, but this would clutter the generated AIR
with unnecessary blocks and degrade analysis performance.

To avoid this, Airlift performs a preliminary pass through the instruction and sub-
routine semantics to collect all jump targets. These include:

¢ Instruction entry points referenced by inter-instruction jumps

¢ Branch targets within the instruction semantics, such as the start of if branches or
loop bodies

In the second pass, the lifter generates AIR using only the necessary block labels.
This includes both instruction-level jump targets and dynamically determined branch
targets within the instruction semantics. The latter are ordered to match the evaluation
order of the original ASL code, ensuring that control flow proceeds naturally and
avoids jumping into the middle of unevaluated logic.

For example:

28

4 Design

¢ For an if statement, the generated AIR consists of several blocks arranged in
order: first, a basic block (BB) evaluating the if condition; next, a BB for the then
branch; then, if present, a BB for the else branch; and finally, a convergence block
where control flow from both branches rejoins. This order ensures that control
flow always enters a branch only after the condition has been evaluated, and
prevents jumps into the middle of a branch before the condition.

¢ For return statements inside residual scopes, a unified return block is placed
at the end of the function’s generated AIR. All return paths jump to this BB,
ensuring convergence and preventing mid-function termination from corrupting
control flow.

These ordering choices ensure that control-flow paths reconverge at the appropriate
point in the semantics, so that subsequent AIR generation can proceed naturally to the
next instruction without requiring backward jumps or reordering.

29

5 Implementation

5.1 Project Structure

The project relies on a small number of external repositories. The official MRAS release
from Arm includes instruction encodings, decode trees, and ASL pseudocode embed-
ded within XML metadata. However, this metadata is not directly usable due to its
fragmented and deeply nested structure. The mra_tools project extracts and restruc-
tures this data into standalone ASL files, such as arch_decode.asl, arch_instrs.asl,
and arch.asl, which serve as clean entry points for external analysis and code genera-
tion.

We also integrate ASLi, from which only the lexer, parser, and typechecker compo-
nents are used, as discussed in Subsection 2.3.1.

There is no other significant dependency besides Rust’s standard metaprogramming
libraries, syn and quote.

The project itself is divided into two main library crates:

* codegen: Responsible for analyzing the MRAS AST and generating the architecture-
dependent parts of both the decoder and the lifter. This crate is invoked only at
build time to generate Rust source code for the lifter crate.

¢ lifter: Contains a minimal amount of manually written skeleton code; the rest
of the crate is generated by the codegen crate. The lifter code is invoked at lift
time, i.e., when translating input binaries.

This separation reflects Airlift’s overall workflow: codegen and its dependencies
run once at build time to generate the architecture-specific lifter code, while the
resulting lifter code is invoked for each lift task at runtime. This division ensures that
architecture analysis and code generation are decoupled from the performance-critical
lifting process.

The manually written and automatically generated parts of the lifter crate are
tightly coupled and cannot function independently. To maintain this integration, code
generation is triggered from within build.rs, ensuring that generated code is updated
automatically whenever relevant source files are modified.

30

5 Implementation

The precise delegation of responsibilities between codegen and lifter is discussed
in Section 5.4.

5.2 ASLi Integration and Interface Boundary

ASLi is implemented in OCaml, a statically typed functional programming language
often used in compiler development. OCaml’s strong type system, pattern matching,
and functional design make it effective for implementing language semantics and trans-
formations. Its ecosystem also includes tools like Ott, which simplifies the definition
and implementation of language grammars.

Ott is a framework for specifying grammars, type systems, and pretty-printers. In
ASLi, Ott is used to define the grammar and abstract syntax of ASL, generating the
lexer, parser, and typechecker automatically.

To integrate ASLi with our Rust-based pipeline, we forked the ASLi repository and
introduced the following changes:

¢ Added a script to run the parser and typechecker in isolation, without executing
AST traversal or evaluation.

¢ Defined a custom JSON serialization format using Ott’s pretty-print homomor-
phisms.

¢ Fixed minor versioning issues that prevented ASLi from building or running in
our environment.

5.2.1 Parser-Only Invocation

ASLi provides scripts for running the lexer and for full interpretation (including
evaluation of the AST). We required a way to extract the typed AST without triggering
evaluation or traversal logic. To support this, we added a script that invokes only the
parser and the typechecker. This enabled reuse of ASLi’s robust parsing infrastructure
while keeping downstream logic entirely in Rust.

5.2.2 Interface Design and JSON Serialization

We chose to use JSON serialization as the interface between ASLi and Airlift. Although
it would have been possible to reuse traversal logic from ASLi, doing so would require
implementing our lifting logic in OCaml. We initially avoided this approach due to the
availability of existing Rust libraries for TNJ and AIR code generation, as well as the
opportunity cost of learning OCaml and Ott.

31

5 Implementation

In retrospect, handling AST traversal ourselves provided valuable flexibility. It
allowed us to explicitly manage context-sensitive information such as scoped symbol
tables and function-level environments, which would have been difficult to retrofit into
ASLi’s evaluation-oriented architecture.

Ott’s pretty-print homomorphisms (pp homs) were originally intended for generating
human-readable representations of AST nodes, typically for documentation, debugging,
or producing concrete syntax from abstract terms. In our case, however, pp homs
worked perfectly well as a tool for JSON serialization. This approach proved more
flexible than alternatives like yojson, as it allowed us to precisely control the output
format. For example, we were able to inject a custom serde_tag field into each node to
facilitate seamless deserialization into Rust structs using serde_json.

5.3 AST Structure and Serialization Pipeline

Each AST node is represented as a generic Rust struct with three main fields: node_type,
node_subtype, and node_data. The node_data field is an enum whose variant depends
on the values of node_type and node_subtype. This design was chosen instead of
defining separate structs for each distinct AST node type, in order to maximize flexibility
during development.

In most cases, nodes of different types are handled distinctly. However, certain
operations, such as register read and write handling, require traversing and processing
nodes without prior knowledge of their exact type. The unified structure simplifies this
kind of generic handling. Additionally, it improves code reusability by accommodating
alternate AST formats without rewriting the surrounding logic.

This design sacrifices some type safety, since invalid combinations of node_type and
node_subtype cannot be statically ruled out. To compensate for this, explicit checks
are performed wherever nodes are matched or handled to ensure the validity of the
type-subtype combination.

To deserialize the JSON representation of the AST, we use Rust’s serde_json library.
The serde ecosystem supports tagged enums, which allow an enum to be deserialized
by matching a tag field in the serialized JSON object. For this purpose, each node_data
object includes a serde_tag field that specifies the intended variant of the enum.

This approach allows serde to automatically deserialize the node_data field into
its corresponding Rust struct based on the value of the serde_tag, without requiring
manual dispatch logic. This mechanism provides a robust and extensible interface
between the JSON-serialized output of ASLi and the statically typed structure of the
Airlift frontend.

32

5 Implementation

Symbolic
Execution

Codegen | I

Lifter

Partial
Evaluation

Lifter Lifter

AIR Generation

AIR Generation

Executable Logic

AIR Generation

Residual
AIR

Complete
AIR

Residual
AIR

Figure 5.1: Partial evaluation and alternatives.

5.4 Runtime Placement of Partial Evaluation

Instruction semantics from the MRAS can be interpreted or transformed into AIR
at different stages in the pipeline: during code generation, during lifter runtime, or
through direct translation into AIR without any evaluation. Figure 5.1 illustrates these

three strategies.

¢ Naive Translation: In this approach, shown in Figure 5.1a, the full instruction
semantics are transpiled into AIR without any attempt to resolve expressions
based on known values. This leads to unnecessarily large AIR programs that
include logic which could have been resolved earlier, had evaluation occurred.
While simple to implement, this strategy produces verbose and inefficient output.

¢ Partial Evaluation at Lifter Runtime: This is the strategy used by Airlift, as shown
in Figure 5.1b. During lifter execution, all instruction field values are available
since they are extracted from the instruction encoding. The lifter evaluates
all expressions that can be resolved using these values and emits AIR for any
remaining computations. The result is residual AIR, which is smaller and more
efficient than the naive approach. This strategy balances implementation effort

and output performance.

¢ Symbolic Execution During Code Generation: In this alternative, shown in
Figure 5.1c, the code generator symbolically evaluates instruction semantics by
treating field values as symbolic inputs. The resulting AIR is residual in the same
sense as with partial evaluation at lifter runtime. The key difference is that all

33

5 Implementation

simplification occurs during code generation. While this eliminates the need
for partial evaluation during lifter execution and produces the same output, it
requires exploring all symbolic execution paths, which makes code generation
significantly more complex and time-consuming.

Although symbolic execution could have reduced lifter complexity and runtime cost,
we chose partial evaluation at lifter runtime for this project. Our goal was to keep
the code generator simple while ensuring correctness and reasonably efficient AIR
output. This also allowed us to isolate the logic responsible for evaluation and maintain
modularity between the lifter and the generated code.

To support partial evaluation during lifter execution, code generation performs
several preparatory steps. For each variable operation or scope creation, the generator
emits logic that handles both promoted and unpromoted cases, depending on values
determined at runtime. Static analyses identify variable reassignments in promoted
scopes and detect early return paths, which inform the shape of block parameters
and return blocks. These decisions are guided by symbol tables, scope contexts, and
subroutine contexts tracked during the recursive AST traversal.

5.5 Subroutine Transpilation

As briefly mentioned in Subsection 4.3.1, subroutine transpilation is performed on
demand, unlike constants, enumerations, and records, which are transpiled in their
entirety at the beginning of the pipeline. This on-demand approach enables clean and
incremental development of the lifter and avoids generating code for subroutines that
are not used by any supported instruction.

There are two categories of subroutines in ASL: those whose implementation is
provided by ASL itself, and those whose semantics are left unspecified and must be
implemented externally. Airlift maintains a separation between automatically translated
subroutines and manually implemented ones. Transpiled subroutines are generated
into a dedicated space, while manually written subroutines reside in a separate file that
can override or complement the generated logic.

Automatically transpiled subroutines are allowed to call manually written ones. To
accommodate this, the build script (build.rs) is rerun whenever the manually written
subroutine set changes, such as when a subroutine is added or removed. This ensures
consistency between generated and handwritten code. Additionally, if a subroutine
is already defined manually, the code generator will skip its translation and instead
use the custom implementation. This provides a convenient mechanism to override or
specialize the behavior of ASL-defined subroutines when necessary.

34

5 Implementation

bits(M*N) replicate_bits(
bits(M) x,
integer N

);
(a) Original ASL code.

fn replicate_bits(
x: Bits,
n: Integer,
m: Integer,
_n: Integer
) -> Result<Bits, Error>;

(b) Transpiled Rust code.
Figure 5.2: Implicit parameters example.

Many ASL subroutines include implicit parameters, such as bit widths of arguments
or return types, which are not explicitly declared in the subroutine signature. These
values are injected into the AST during parsing by ASLi. Since they are frequently
used within subroutine bodies, Airlift translates them into explicit parameters in the
generated Rust code, placed alongside the original subroutine arguments.

The ordering of these implicit parameters is inferred from examples found in the
AST: first, any bit widths of the explicit parameters are extracted from left to right,
followed by the bit width of the return type. In some cases, an implicit parameter shares
the same name as an explicit parameter. These represent the same value semantically,
but since both appear in the AST node for the function call, both are included in the
translated Rust signature for simplicity. When this occurs, one of the parameters is
renamed to avoid duplication, which is safe to do since both parameters represent the
same value and only one is actually used in practice. An example of this pattern is
shown in Figure 5.2.

5.6 Representation of ASL Data Types in AIR

ASL defines a range of high-level data types that must be lowered into the more minimal
set of types supported by AIR. The translation preserves semantics while aligning with
the restricted and verifiable type system of AIR. Each ASL type is mapped as follows:

35

5 Implementation

Integers are represented as Int.

Booleans are represented as Bool.

Bits are represented as FixedSizeInt.

* Enumerations are also represented as FixedSizeInt. ASL enums are only used
in comparison operations, and both the ASLi parser and the lifter enforce that
values from different enum types are never compared. This makes it sufficient to
encode each enum variant as an integer index, where the nth variant of an enum
type is converted into a FixedSizeInt with value n.

Records are translated by recursively flattening their fields. When a record is
passed to a BB, this can happen either because one or more of its fields are
updated within a promoted scope and the updated record must be propagated to
a converging block, or because the record is returned by an early return statement.
In these cases, the record is decomposed into a list of primitive values such as
integers, booleans, bits, or enums. These are passed as separate block parameters
in a fixed, deterministic order. At the start of the destination block, the record is
reconstructed using the received block parameters.

For example, consider the following nested record definition:

type AddressDescriptor is (
FaultRecord fault,
MemoryAttributes memattrs,
FullAddress paddress,
bits(64) vaddress

)

In this case, flattening proceeds by visiting the fields of the record in the order they
are declared. The primitive fields of fault are extracted first, followed by those
of memattrs, then paddress, and finally the vaddress field. All nested records
are recursively unpacked in the same way. The resulting list of primitive values
is passed to the destination block as individual block parameters. Because the
traversal and reconstruction order is consistent, the original AddressDescriptor
can be accurately reassembled at the entry of the receiving block.

5.7 Uncertainty with ASL Decoding Match-Case Logic

ASL decoding logic is structured entirely as nested match-case expressions that define
the dispatch of instruction encodings. These expressions map tuples of instruction field

36

5 Implementation

values to the corresponding semantic implementation of each instruction. Each case
specifies a pattern, which may include exact bit values or wildcards, and an associated
instruction name.

case (opl, op2, Rt) of

when (_, _, !) => __UNALLOCATED
when (_, _,)

=> __encoding aarch64_system_register_cpsr
when (s s)

=> __encoding aarch64_integer_flags_cfinv
when (, »)

=> __encoding aarch64_integer_flags_xaflag
when (, »)

=> __encoding aarch64_integer_flags_axflag

case (CRm, op2) of

when (_, _) => __encoding aarch64_system_hints

when (, => __encoding aarch64_system_hints
when (s) => __encoding aarch64_system_hints
when (R) => __encoding aarch64_system_hints

Figure 5.3: arch_decode.asl match-case branch ordering examples.

As shown in Figure 5.3, broader and more general patterns, such as those using
wildcards, frequently appear before more specific ones. In a conventional top-down
evaluation model, this ordering would cause general patterns to override the specific
cases listed afterward, making the latter unreachable. However, when implementing the
decoder, we found that evaluating match-case expressions in reverse order produced
the expected behavior, with specific branches matched correctly. This suggests that ASL
decoding logic is designed with bottom-up pattern matching in mind.

This bottom-up interpretation is consistent with all decoding patterns observed so far
in arch_decode.asl. Accordingly, the current implementation assumes reverse-order
branch checking during decoding. If future examples are encountered where a specific
case appears above a broader one and still takes precedence, this assumption would
need to be revised. In such a case, a mechanism for partially ordering branches based
on their pattern specificity would be required to ensure correct decoding behavior.

37

5 Implementation

5.8 Transpilation Challenges from Rust’s Type Safety Features

5.8.1 Exhaustiveness in Match-Case Logic

ASL match-case constructs may or may not be exhaustive, and the specification does
not explicitly differentiate between the two. Since Rust requires all match expressions
to be exhaustive, we instead translate ASL match-case expressions into chains of if
and else if statements.

ShiftType decode_shift(Bits(2) op)
case op of

when return ShiftType_LSL;
when return ShiftType_LSR;
when return ShiftType_ASR;
when return ShiftType_ROR;

(a) Original ASL code.

fn decode_shift(op: Bits) -> Result<ShiftType, Error>
{
if (op.match_with_pattern() o
return Ok(ShiftType::ShiftType_LSL);
} else if (op.match_with_pattern(N A
return Ok(ShiftType::ShiftType_LSR);
} else if (op.match_with_pattern()) Ao
return Ok(ShiftType::ShiftType_ASR);
} else if (op.match_with_pattern(N A
return Ok(ShiftType::ShiftType_ROR);
}

unreachable! ()

(b) Transpiled Rust code.

Figure 5.4: Exhaustive match-case transpilation example.

In cases where the original ASL logic is indeed exhaustive, the resulting Rust code
is not statically recognized as such by the compiler. To indicate that the code path
should never be reached, we append a trailing unreachable! () macro at the end of
each subroutine. This serves both as a compiler hint and as explicit documentation for

38

5 Implementation

unreachable code paths; it will panic if triggered at runtime, but such a path should be
impossible under correct semantics.

Additionally, for ASL variable declarations that are syntactically uninitialized but are
guaranteed to be assigned a value through exhaustive match-case logic, we initialize the
corresponding Rust variables with default values. This avoids compiler errors related
to potentially uninitialized use, even though the logic is sound in the original ASL.

An example is shown in Figure 5.4, where an ASL function using exhaustive match-
case dispatch is transpiled into a sequence of conditional checks with a trailing
unreachable! statement to satisfy Rust’s exhaustiveness constraints.

5.8.2 Nested Mutable Borrow and InstructionBuilder Access

One of the central components in AIR generation is the InstructionBuilder object,
which is passed as a mutable reference to all subroutines that emit AIR code. However,
nested calls involving mutable access to the same InstructionBuilder are forbidden
by Rust’s borrow checker. This restriction poses a challenge during the generation of
deeply nested AIR expressions, which are common in transpiled ASL arithmetic and
logic constructs.

To resolve this, any function call that accepts a mutable reference to the builder object
is refactored to evaluate its arguments first and store them in intermediate variables.
These intermediate values are then passed as arguments to the subroutine. This not
only satisfies the borrow checker but also avoids the need for unsafe code. To reduce
naming conflicts, Rust’s variable shadowing is used so that intermediate results can
reuse the original variable names where appropriate.

Figure 5.5 shows how a nested function call is rewritten into sequential variable
bindings to avoid illegal nested mutable borrows.

5.9 Registers and Flags Configuration

The AIR model explicitly includes only a minimal subset of architectural state: general-
purpose registers X[0] - - - X[30], the stack pointer SP, and the condition flags PSTATE.N,
PSTATE.Z, PSTATE.C, and PSTATE.V. These are the only registers and flags that are
accessed or modified directly by the instruction semantics for the subset of AArch64
instructions supported in this project.

The program counter (PC) is not included in AIR as an explicit register. Instead,
its value is managed separately in the lifter’s runtime memory. This is because the
lifter is responsible for resolving block labels and tracking control flow, as discussed in
Subsection 4.4.4, and because TNJ does not require the PC to be represented directly in
the AIR output.

39

5 Implementation

let unsigned_sum: TypedValue = add_int(
builder, // outer mutable borrow
add_int(
builder, // nested mutable borrow 1
uint (
builder, // nested mutable borrow 2
x, Integer::from(n.clone())

)7,
uint (
builder, // nested mutable borrow 3
y, Integer::from(n.clone())
)7
)7,
uint (

builder, // nested mutable borrow 4
carry_in, Integer::from(1)
)7

)7;

(a) Nested mutable borrow.

let unsigned_sum: TypedValue = {
let arg 0 = {
let arg O

let arg_1

uint (builder, x, Integer::from(n.clone()))7?;

uint(builder, y, Integer::from(n.clone()))?;
add_int(builder, arg_0, arg_1)7?
}
let arg_1 = uint(builder, carry_in, Integer::from(1))7?;
add_int (builder, arg_ 0, arg_1)7
3

(b) Nested mutable borrow fix.

Figure 5.5: Nested mutable borrow example.

40

5 Implementation

For all other architectural state, such as system registers, control flags, and exception-
related fields, we assume that programs run in user-level privilege mode, with most
optional architectural features considered inactive.

The one exception to this is the pointer authentication code (PAC) extension. We
assume this hardware extension is enabled, as it is featured in virtually all Apple CPUs
for more than five years and is available in many other manufacturers” cores. Certain
instructions in the Sightglass benchmark suite require PAC support; if it were disabled,
these instructions would fail to decode or behave incorrectly during execution.

5.10 FP/SIMD and Other Unsupported Instructions

Airlift fully supports the lifting of integer arithmetic, branch, and memory instructions
using their complete semantics as defined in the MRAS. These categories constitute the
majority of instructions in the AArch64 base ISA, and are sufficient for the purposes of
TN]J, which focuses primarily on memory safety.

A large portion of the remaining, unsupported instructions consists of FP and SIMD
operations. These instructions fall under the Neon extension of the AArch64 ISA, and
are included in the MRAS. However, they operate on vector registers and are generally
orthogonal to memory semantics, making them largely irrelevant in the TN]J context.

To ensure that Airlift can still lift complete real-world binaries, we implement a robust
fallback mechanism: every instruction, whether supported or not, can be decoded.
For unsupported instructions, Airlift inserts fallback AIR code that preserves memory
soundness. Specifically, whenever an unsupported instruction writes to a general-
purpose register (X[0] - - -X[30]), an opaque value is assigned to that register. This
conservative approximation maintains correctness guarantees without requiring full
semantic coverage.

41

6 Evaluation

This chapter evaluates the correctness, robustness, and structural efficiency of Airlift,
a binary lifter that translates AArch64 instructions into AIR. Airlift was not designed
with performance as a primary goal; instead, it prioritizes semantic correctness by
adhering closely to the MRAS and supports a generalized transpilation pipeline. As
a result, performance comparable to a manually written lifter is neither expected nor
pursued. However, evaluating its output against the hand-written baseline allows us to
quantify the inefficiencies introduced by this design and to identify specific bottlenecks
that may be optimized in future work. The evaluation is guided by the following
research questions:

¢ RQ1. Can Airlift lift real-world benchmark programs completely, and how robust
are its decoding and lifting pipeline?

* RQ2. Does Airlift’s performance on real-world benchmark programs suggest it is
suitable for practical use?

¢ RQ3. What are the lifting time, AIR instruction count, and block count characteris-
tics of Airlift’s output across supported instruction categories (integer arithmetic,
branches, memory)?

* RQ4. Which instruction-level patterns lead to the greatest structural inefficiencies
in Airlift’s output, and what qualitative insights can be drawn to guide future
improvements?

6.1 Practical Usability

This section evaluates Airlift’s practical usability in two dimensions: its ability to lift
real-world binaries completely and correctly (RQ1), and its suitability for use in practice
from a performance standpoint (RQ2). Airlift is not solely a research prototype; it
also serves a practical purpose by enabling TNJ to verify memory safety on real-world
binaries. To be viable in this context, the lifter must decode and lift code generated
in actual environments without crashing, producing unsound output, or requiring
impractical runtimes.

42

6 Evaluation

6.1.1 Decoding Coverage and Lifting Robustness (RQ1)

A key requirement for practical usability is robustness. As discussed in Section 5.10,
Airlift does not fully lift the instruction semantics of AArch64 instructions that are
not relevant to memory safety, such as FP and SIMD instructions. These are instead
treated as unsupported: the lifting logic conservatively approximates their behavior by
assigning opaque values to any general-purpose registers (X[0] - - - X[30]) they write.
This fallback mechanism prevents unsafe behavior while preserving correctness for
memory safety verification.

We evaluated Airlift using the . text segments of 114 applications from the Sightglass
benchmark suite, compiled from WebAssembly (WASM) to AArch64 using Cranelift
with 02 optimization. We used Cranelift’s default settings for AArch64 MacOS.

All lifting was performed on a machine with the following specifications:

e CPU: AMD EPYC 7713P 64-Core Processor
e RAM: 991 GiB

e OS: NixOS 24.11

All binaries were successfully decoded and lifted by Airlift, demonstrating complete
decoding coverage and robust lifting behavior. By comparison, the manually written
lifter was only tested on 31 applications, and it failed on 21 of them. These failures
were caused by decoding errors in the yaxpeax-arch crate, which does not support
instructions from the AArch64 ISA’s Scalable Vector Extension (SVE) and Scalable
Matrix Extension (SME) extensions. This result highlights a key advantage of the MRAS-
based approach: decoding coverage is guaranteed by adherence to the specification,
and the flexibility of Airlift’s generalized transpilation pipeline allows arbitrary fallback
instructions to be emitted in a low-effort, error-resistant way.

Answer to RQ1. Airlift achieved full decoding coverage and successfully lifted all 114
WASM applications in the Sightglass benchmark suite, demonstrating robustness and
specification-compliance in both decoding and lifting stages.

6.1.2 Performance Bottleneck in Practical Use (RQ2)

Although Airlift successfully lifted all 114 binaries in the Sightglass suite, its perfor-
mance remains too slow for most practical use cases. It was 1111 times slower than
1lvm-objdump on median, making it unsuitable for latency-sensitive workflows or
large-scale batch processing in its current form.

43

6 Evaluation

perf analysis revealed that memory allocation and deallocation were the primary
bottlenecks, consuming over 20% of total CPU time. This was largely due to the large
volume of lifter code transpiled from the MRAS, which includes promotion logic that
handles both static and residual semantics, as explained in Subsection 4.4.3. To avoid
stack overflows, stack usage had to be minimized, and many data structures were
moved to the heap. We expect that this bottleneck could be alleviated with more
efficient memory management.

In addition, the emulation of variable assignments, as discussed in Subsection 4.4.3,
frequently involves adding to and removing from heap-stored data structures. Delegat-
ing this responsibility to the code generation stage may reduce memory pressure and
improve overall performance.

Further analysis of output structure and lifting cost is provided in Section 6.2, where
Airlift is compared against a manually written baseline lifter that generates equivalent
AlIR.

Answer to RQ2. Airlift is 1111 times slower than 11vm-objdump on median, making it
unsuitable for performance-critical use in its current form. Profiling identified memory
allocation and deallocation as the main bottlenecks, suggesting that better memory
management could significantly reduce runtime.

6.2 Performance and Structural Inefficiencies

This section investigates Airlift’s efficiency and sources of structural overhead. While
the previous chapter evaluated its correctness and viability on real-world programs,
here we quantify how much lifting cost is introduced across instruction categories
(RQ3) and identify the instruction-level patterns that cause these inefficiencies (RQ4).

6.2.1 Lifting Output Metrics (RQ3)

To evaluate Airlift’s efficiency, we measured lifting time, AIR instruction count, and
block count across the three supported instruction categories: integer arithmetic, branch,
and memory operations.

All benchmarks were conducted by running both Airlift and a manually written base-
line lifter on individual instructions, five times each, and averaging the results. For in-
structions with multiple semantic blocks in the MRAS, such as add and sub, we included
all relevant variants (add_sub_carry, add_sub_shiftedreg, and add_sub_extendedreg)
and computed the average over them.

Both lifters were executed on the same machine:

44

6 Evaluation

CPU: 12th Gen Intel i7-1255U (12) @ 4.70GHz
RAM: 15 GiB
OS: Arch Linux

Figure 6.1 presents the comparative results. On a logarithmic scale, the lifting time
(6.1a), instruction count (6.1b), and block count (6.1c) are plotted as the ratio of Airlift
to the manual baseline across instruction categories.

Airlift performs significantly worse for memory operations in all three metrics.
However, this is not a flaw in the system. The inefficiency results from Airlift’s complete
adherence to architectural semantics, which are largely skipped by the manual baseline.
While the manually written lifter simply loads and stores values, Airlift handles the
full spectrum of memory-related semantics, including:

Memory Ordering Semantics: Memory accesses are modeled to follow archi-
tectural ordering guarantees, ensuring correct interaction with concurrent and
atomic operations.

Alignment Enforcement: Proper alignment is enforced based on access size and
memory type. In cases of misalignment, fallback mechanisms are employed to
maintain architectural correctness.

Unaligned Access Handling: When alignment cannot be guaranteed, memory
operations are performed byte-wise to preserve compliance with architectural
semantics, even under constrained or unpredictable conditions.

Endianness Handling: Byte-order transformations are applied as necessary to
support both little-endian and big-endian execution modes.

Exclusivity Semantics: Exclusive access behavior is maintained to support atomic
read-modify-write sequences, including tracking of exclusivity state based on
address and memory region properties.

Memory Attribute Awareness: Memory accesses are influenced by architectural
attributes such as cacheability, shareability, and memory type, which affect both
visibility and access behavior.

Address Translation and Permissions: Virtual-to-physical address translation
and permission enforcement are incorporated to determine effective addresses
and access legitimacy under architectural rules.

45

6 Evaluation

Memory — T

Branch A }-II-I

Integer - —{ [H @0 o o

10° 10! 10? 103

(a) Airlift / manual ratio: lifting time.

Memory - — T

Branch A D—‘:]—i

Integer [M ®oo o

109 101 102 103

(b) Airlift / manual ratio: instruction count.

Memory T o

Branch - l—‘:’—!

Integer T——mmm l (0] o

10° 10! 10? 103

(c) Airlift / manual ratio: block count.
Figure 6.1: Comparison of lifting efficiency metrics across instruction categories.

Note: Memory instruction ratios appear disproportionately high due to Airlift’s full
adherence to architectural semantics, which the manual baseline omits.

46

6 Evaluation

¢ Atomicity Conditions: Guarantees of atomicity are preserved for memory op-
erations, particularly for wide accesses. When necessary, such operations are
decomposed into smaller, atomic sub-accesses to uphold semantic correctness.

When memory operations are excluded, we find that among integer arithmetic and
branch instructions, the runtime difference is more pronounced than the difference
in AIR size. On average, Airlift is 4.3 times slower, while the generated AIR code is
only 2.1 times bigger. This suggests that partial evaluation helps reduce the size and
complexity of the generated AIR by avoiding code generation for inactive control paths.
In contrast, a naive lifting strategy that transpiles the full instruction semantics would
generate AIR for all branches, leading to bloated control flow and data flow graphs.

However, this comparison between lifting time and AIR instruction count only
hints at the effectiveness of partial evaluation. The larger runtime difference may
also stem from unrelated factors such as poor memory management, as discussed in
Subsection 6.1.2.

Answer to RQ3. Airlift took a median of 4.3 times longer than the manually written
baseline lifter, while the generated AIR code was only 2.1 times bigger. This suggests
partial evaluation helps reduce code size, though the runtime gap likely also reflects
other inefficiencies, such as memory management. Directly translating MRAS logic
also introduces structural and performance inefficiencies, leaving room for further
optimization.

__execute
bits(datasize) operand = X[n];
bits(datasize) result;
for i = 0 to datasize-1
result[datasize-1-i] = operand[i];

(a) Loop example in rbit.
integer HighestSetBit(bits(N) x)
for i = N-1 downto O

if x[i] == then return i;
return -1;

(b) Loop example in cls and clz.

Figure 6.2: Loop examples in ASL instruction semantics.

47

6 Evaluation

6.2.2 Sources of Inefficiency (RQ4)

Despite the benefits of partial evaluation, it also introduces performance drawbacks.
Loops are the clearest example. The three outlier points in lifting time for integer
instructions (shown in Figure 6.1.a) can be traced to Airlift executing loops like those
in Figure 6.2. In the case of rbit (6.2a), datasize is a static variable and operand is
residual. This causes the lifter to execute the loop and emit AIR for every iteration. The
same applies to cls and clz (6.2b), where the loop executes 32 or 64 times depending
on operand width, resulting in increased lifting time and AIR code size.

__execute

(result, nzcv) = AddWithCarry(operandl, operand2, PSTATE.C);
if setflags then

PSTATE. [N,Z,C,V] = nzcv;
X[d] = result;

(bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
integer signed_sum = SInt(x) + SInt(y) + Ulnt(carry_in);
bits(N) result = unsigned_sum[N-1:0];
bit n = result[N-1];

bit z = if IsZero(result) then else ;
bit ¢ = if UInt(result) == unsigned_sum then else ;
bit v = if SInt(result) == signed_sum then else ;

return (result, n:z:c:v);

Figure 6.3: Unnecessary flag value calculation

Other inefficiencies, while less severe, are still noteworthy. Figure 6.3 shows the
semantics for addition and subtraction instructions. The AddWithCarry subroutine
calculates flag values regardless of whether the instruction sets flags. This is wasteful
for variants where setflags is not set. Optimizations of this type could be applied to
the AST of the MRAS before generating lifter code.

Answer to RQ4. Loops are the primary weakness of Airlift’s partial evaluation strategy.
In some cases, they result in worse performance than naive lifting. Additionally, generic
ASL code causes unnecessary computation, highlighting opportunities for optimizations
in the MRAS AST before code generation.

48

7 Future Work

7.1 Additional Implementations

Airlift can be extended to support other ISAs that already provide a complete MRAS,
such as RISC-V. Since ASL is currently only used to describe the Arm ISA, supporting
other MRAS languages like Sail (used by RISC-V) would require developing a new
frontend. Another direction is generalizing the transpilation framework to allow easy
integration of custom IRs. This would require broader instruction coverage. Although
FP and SIMD instructions were not essential for the current use case of TNJ, supporting
them would broaden the applicability of Airlift.

A key advantage of basing the lifter on MRAS is that extending support to additional
instructions within the same ISA generally requires little effort. The generic mechanisms
for instruction transpilation are already in place, so supporting new instructions would
often only require adding support for a few additional ASL constructs.

7.2 Optimizations

As discussed in Chapter 3, correctness was the primary objective of this project. Apart
from partial evaluation, no other optimizations were applied. This section outlines
potential optimizations that can be applied to different stages of the Airlift workflow.

7.2.1 Loop Optimizations

In Section 6.2 we mentioned that loops, specifically ones whose body is a runtime scope
but contains operations with promoted variables, were a major source of inefficiency
for our approach. In the examples presented in Figure 6.2, there are not many runtime
operations included in the body of the loop. In the first loop, only datasize-1-i
is a runtime operation, while in the second loop, all operations involve promoted
variables. This means that the reduction in the volume of the generated AIR code from
iterating over the loops was minimal. A more efficient approach in this case would be to
transpile the entire loop without any partial evaluation, possibly excluding datasize-1
and N-1 in the loop condition, which can still benefit from being precomputed. An
effective optimization would be to design a heuristic that determines whether or not the

49

7 Future Work

loop should be partially evaluated based on how much runtime workload in the loop
body could be precomputed. The examples in Figure 6.2 would benefit from complete
transpilation, both in lifting time and generated IR volume. On the other hand, a loop
with a large number of runtime operations and a single promoted operation would
benefit from partial evaluation.

7.2.2 AIR Code Post-Processing

From a qualitative analysis of the generated AIR codes, we observed that dead-code
elimination would be one of the most effective optimizations to reduce AIR instruction
count. This is due to how many ASL instruction semantics are designed. A represen-
tative example is shown in Figure 6.3. In the example, the NZCV flags are calculated
before checking the setflags instruction field, resulting in flag calculation logic even
for instructions like add and sub where the flags are not needed. Eliminating such
dead code would significantly reduce the AIR code volume. Other optimizations, like
peephole optimizations, could yield further improvements. However, these would
increase lifting time, as they must be performed during lifter runtime.

7.2.3 ASL Code Pre-Processing

Unlike optimizations on the generated AIR code, optimizations performed on the input
ASL code would reduce lifting time and instruction count without adding runtime
overhead. In fact, most such optimizations would improve both metrics. Considering
again the example in Figure 6.3, modifying the ASL to calculate flag values only when
the setflags field is set allows the partial evaluation strategy to skip this segment
entirely.

integer HighestSetBit(bits(N) x)
return x != Zeros(N) ? FloorLog2(UInt(x)) : -1;

integer FloorLog2(integer x)
integer result = -1;
while x > 0 do

X =x > 1;
result = result + 1;
return result;

Figure 7.1: Possible ASL optimization of Figure 6.2b

Figure 7.1 shows another possible optimization on ASL code: this time on a loop

50

7 Future Work

that we have already discussed in Section 6.2. Because of the if statement in the
original loop body, every iteration generates three blocks in the output AIR code. In
the modified implementation, which has no if in the loop body, the block count drops
by at least 100. The challenge here is automating detection and patching of such
opportunities.

7.2.4 Delegating Partial Evaluation to Codegen

In Section 5.4 we discussed the possibility of performing partial evaluation during the
code generation stage instead of during lifter runtime. This would drastically increase
complexity and workload at the code generation stage but significantly reduce lifting
time, which is a much more relevant performance metric. This idea has been explored
by Lift-Offline [9].

51

8 Related Work

8.1 Manual Lifter Implementations

McSema is an open-source, manually written lifter that translates machine code from
various ISAs into the widely used LLVM IR [6]. Developed by the security-focused
company Trail of Bits, McSema targets use cases such as symbolic execution, formal ver-
ification, and reverse engineering. It provides full control-flow recovery and a memory
model suitable for program analysis, but is not optimized for seamless recompilation
or direct integration into compiler pipelines.

In contrast, MCtoLL is another manually developed LLVM IR lifter, created by
Microsoft [30]. It focuses on clean integration with the LLVM toolchain, enabling
lifted binaries to directly benefit from existing compiler infrastructure such as static
analysis passes, optimization pipelines, and backend support for recompilation to
other architectures. MCtoLL assumes well-formed, compiler-generated binaries with
symbol information, making it less suitable for stripped or obfuscated binaries but
more suitable for practical reuse in toolchains.

While many tools lift machine code into popular IRs such as LLVM IR, other systems
define and use custom IRs tailored to specific use cases. For example, QEMU uses TCG
IR, a low-level, architecture-independent representation optimized for fast dynamic
binary translation [5]. Risotto, a QEMU-based system, improves QEMU'’s support for
weak memory model architectures by formalizing the concurrency semantics of TCG IR
and inserting fences at runtime to preserve correctness [11]. Similarly, Lasagne targets
static binary translation from x86 to Arm and introduces a concurrency-aware IR with
a formally defined memory model, allowing it to statically insert fences while proving
correctness with respect to the source and target ISAs [24].

8.2 Automatic Lifter Generation

Although there are numerous tools for lifting machine code into existing IRs, writing
lifters for specialized IRs or constrained use cases remains a manual and error-prone
task. Recent work has explored automated approaches. Cross-Architecture Lifter
Synthesis proposes learning a lifter for one ISA by analyzing an existing lifter for

52

8 Related Work

another ISA [27]. Forklift uses a token-level encoder-decoder transformer model to lift
assembly code to LLVM IR [2]. While promising, these approaches do not offer the
level of semantic precision required for formally sound system-level lifting.

8.2.1 MRAS-Based Lifting

Lift-Offline takes a more precise approach by generating a lifter directly from the ASL
machine-readable specification [9]. It applies partial evaluation to simplify instruction
semantics before generating the lifter, a technique that shares the same underlying
motivation as Airlift. However, the stage at which partial evaluation occurs differs.
Lift-Offline performs it during the code generation phase, whereas Airlift defers it to
lifter runtime, as illustrated in Figure 5.1 and discussed in Section 5.4. Additionally,
Airlift was developed independently and prior to the publication of Lift-Offline, with
its implementation motivated by integration requirements in real-world systems where
both semantic correctness and practical constraints must be balanced.

53

9 Conclusion

In this thesis, we presented Airlift, an automatically generated Rust-based lifter built
from the AArch64 ISA’s ASL MRAS. Airlift was developed with a focus on real-world
integration into TN]J, which uses the generated AIR code to verify code safety in JIT
compilation. The lifter is generated via hybrid transpilation of the MRAS, emitting
executable Rust code for operations involving runtime-known values, and residual
AIR code for machine state-dependent semantics. Prioritizing correctness in its design,
we also compared Airlift’s performance against a manually written baseline lifter to
identify optimization opportunities for future work.

54

Abbreviations

AIR Assembly Intermediate Representation
ASL Architecture Specification Language
ASLi ASL interpreter

AST abstract syntax tree

BB basic block

FP floating point

IR intermediate representation

ISA instruction set architecture

JIT just-in-time

MRAS machine-readable architecture specification
PAC pointer authentication code

PCC proof-carrying code

PC program counter

SIMD single instruction, multiple data

SME Scalable Matrix Extension

55

Abbreviations

SP stack pointer

SSA static single-assignment
SVE Scalable Vector Extension
TNJ TrustNoJit

WASM WebAssembly

56

List of Figures

21 TNJDiagram e
22 AIRExample
23 AArch64 Example.o
2.4 aarch_decode.asl Example,
2.5 aarch_instrs.asl Example o 0 o 0L

3.1 Airlift Diagram

41 ASL Dynamic Typing Example
42 ASL Variable Promotion Example
43 ASL Residual Scope Variable Assignment Example
44 ASL Residual Scope Return Statement Example

5.1 Partial Evaluation Alternatives
52 Implicit Parameters Example
5.3 Match-Case Branch Ordering Examples
5.4 Exhaustive Match-Case Transpilation Example
5.5 Nested Mutable Borrow Example Fix

6.1 Comparison of Lifting Efficiency Metrics across Instruction Categories .
6.2 Loop Examples in ASL Instruction Semantics.
6.3 ASL Unnecessary Code Execution Example

7.1 Possible ASL Optimization

57

\O Co Q1

Bibliography

(1]

[10]

B. Alliance. Sightglass: A Benchmarking Framework for Wasmtime and Cranelift.
https://github. com/bytecodealliance/sightglass. Accessed: 2024-05-09.
2024.

J. Armengol-Estapé, R. C. O. Rocha, J. Woodruff, P. Minervini, and M. E. P. O’Boyle.
Forklift: An Extensible Neural Lifter. 2024. arXiv: 2404.16041 [cs.PL].

A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M. Norton,
P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, 1. Stark, N. Krishnaswami,
and P. Sewell. “ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS.” In: Proc.
ACM Program. Lang. 3.POPL (Jan. 2019). por: 10.1145/3290384.

Avast Software. RetDec: A Retargetable Machine-Code Decompiler. https://retdec.
com/.

F. Bellard. “QEMU, a fast and portable dynamic translator.” In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference. ATEC '05. Anaheim,
CA: USENIX Association, 2005, p. 41.

T. of Bits. McSema: Lift-based Static Binary Translation. https://github . com/
lifting-bits/mcsema. Accessed: 2024-05-09. 2024.

D. L. Bruening and S. Amarasinghe. “Efficient, transparent, and comprehensive
runtime code manipulation.” AAI0807735. PhD thesis. USA, 2004.

D. Brumley, L. Jager, T. Avgerinos, and E. J. Schwartz. “BAP: A Binary Analysis
Platform.” In: Computer Aided Verification. Ed. by G. Gopalakrishnan and S. Qadeer.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 463-469. 1sBN: 978-3-
642-22110-1.

N. Coughlin, A. Michael, and K. Lam. “Lift-Offline: Instruction Lifter Generators.”
In: Static Analysis. Ed. by R. Giacobazzi and A. Gorla. Cham: Springer Nature
Switzerland, 2025, pp. 86-119. 1sBN: 978-3-031-74776-2.

K. Garbers. “Design and Implementation of a Binary Translator from AArch64
to a Custom Intermediate Representation.” Bachelor’s thesis. Munich, Germany:
Department of Informatics, Technical University of Munich, 2025.

58

https://github.com/bytecodealliance/sightglass
https://arxiv.org/abs/2404.16041
https://doi.org/10.1145/3290384
https://retdec.com/
https://retdec.com/
https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/mcsema

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Gouicem, D. Sprokholt, J. Ruehl, R. C. O. Rocha, T. Spink, S. Chakraborty, and
P. Bhatotia. “Risotto: A Dynamic Binary Translator for Weak Memory Model Ar-
chitectures.” In: Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1. ASPLOS 2023.
Vancouver, BC, Canada: Association for Computing Machinery, 2022, pp. 107-122.
ISBN: 9781450399159. po1: 10.1145/3567955.3567962.

Hex-Rays. Hex-Rays Decompiler. https ://hex-rays . com/decompiler. https:
//hex-rays.com/decompiler. 2024.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.
“sel4: formal verification of an OS kernel.” In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles. SOSP ’09. Big Sky, Montana, USA:
Association for Computing Machinery, 2009, pp. 207-220. 1sBN: 9781605587523.
DOIL: 10.1145/1629575.1629596.

C. Lattner and V. Adve. “LLVM: a compilation framework for lifelong program
analysis & transformation.” In: International Symposium on Code Generation and
Optimization, 2004. CGO 2004. 2004, pp. 75-86. po1: 10.1109/CG0.2004.1281665.

A. Ltd. A64 Instruction Set Architecture. https://developer.arm.com/Architectures/

A64%20Instruction%20Set%20Architecture. Accessed: 2025-05-13. 2024.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,]. Feist, T. Brunson,
and A. Dinaburg. Manticore: A User-Friendly Symbolic Execution Framework for
Binaries and Smart Contracts. 2019. arXiv: 1907.03890 [cs.SE].

National Security Agency. Ghidra Software Reverse Engineering Framework. https:
//ghidra-sre.org/. Accessed: 2024-05-09. 2024.

G. C. Necula. “Proof-carrying code.” In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL "97. Paris,
France: Association for Computing Machinery, 1997, pp. 106-119. 1sBN: 0897918533.
DOIL: 10.1145/263699.263712.

N. Nethercote and J. Seward. “Valgrind: a framework for heavyweight dynamic
binary instrumentation.” In: Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI '07. San Diego, Cal-
ifornia, USA: Association for Computing Machinery, 2007, pp. 89-100. 1sBN:
9781595936332. po1: 10.1145/1250734.1250746.

J. Norman. Super Duper Secure Mode. https : / /microsoftedge . github . io/
edgevr /posts/Super - Duper - Secure - Mode/. Microsoft Browser Vulnerability
Research, Accessed: 2024-05-09. 2021.

59

https://doi.org/10.1145/3567955.3567962
https://hex-rays.com/decompiler
https://hex-rays.com/decompiler
https://hex-rays.com/decompiler
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/CGO.2004.1281665
https://developer.arm.com/Architectures/A64%20Instruction%20Set%20Architecture
https://developer.arm.com/Architectures/A64%20Instruction%20Set%20Architecture
https://arxiv.org/abs/1907.03890
https://ghidra-sre.org/
https://ghidra-sre.org/
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/1250734.1250746
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/

Bibliography

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Reid. ARM'’s Architecture Specification Language. https : / / alastairreid .
github.io/specification_languages/. Accessed: 2024-05-10. 2016.

A. Reid. Towards a Formal Specification of Intel’s x86 Architecture. Presented at the
Novel Architecture and Novel Design Automation (NANDA) Workshop. Imperial
College London. Sept. 2022.

A. Reid. Using ASLi with Arm’s v8.6-A ISA specification. https://alastairreid.
github.io/using-asli/. Accessed: 2024-05-10. 2020.

R. C. O. Rocha, D. Sprokholt, M. Fink, R. Gouicem, T. Spink, S. Chakraborty,
and P. Bhatotia. “Lasagne: a static binary translator for weak memory model
architectures.” In: Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. PLDI 2022. San Diego, CA, USA:
Association for Computing Machinery, 2022, pp. 888-902. 1sBN: 9781450392655.
DOI: 10.1145/3519939.3523719.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna. “SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis.” In: IEEE Symposium on Security and
Privacy. 2016.

M. Stone, J. Semrau, and J. Sadowski. We're All in This Together: A Year in Review
of Zero-Days Exploited In-the-Wild in 2023. Tech. rep. Accessed: 2024-05-09. Google,
2024.

R. van Tonder and C. Le Goues. “Cross-Architecture Lifter Synthesis.” In: Software
Engineering and Formal Methods. Ed. by E. B. Johnsen and I. Schaefer. Cham:
Springer International Publishing, 2018, pp. 155-170. 1sBN: 978-3-319-92970-5.

“Trustworthy Specifications of ARM v8-A and v8-M System Level Architec-
ture.” In: Proceedings of Formal Methods in Computer-Aided Design (FMCAD 2016).
Mountain View, CA, USA, Oct. 2016, pp. 161-168. 1sBN: 978-0-9835678-6-8.

D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson, F. Spano, Y. J.
Wu, J. Yang, and V. P. Kemerlis. “Egalito: Layout-Agnostic Binary Recompila-
tion.” In: Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS "20. Lausanne,
Switzerland: Association for Computing Machinery, 2020, pp. 133-147. 1SBN:
9781450371025. por: 10.1145/3373376.3378470.

S. B. Yadavalli and A. Smith. “Raising Binaries to LLVM IR with MCTOLL
(WIP Paper).” In: Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems. LCTES 2019.

60

https://alastairreid.github.io/specification_languages/
https://alastairreid.github.io/specification_languages/
https://alastairreid.github.io/using-asli/
https://alastairreid.github.io/using-asli/
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1145/3373376.3378470

Bibliography

Phoenix, AZ, USA: Association for Computing Machinery, 2019, pp. 213-218.
1SBN: 9781450367240. por: 10.1145/3316482.3326354.

[31] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. “Formal verification of
SSA-based optimizations for LLVM.” In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI "13. Seattle,
Washington, USA: Association for Computing Machinery, 2013, pp. 175-186. 1sBN:
9781450320146. po1: 10.1145/2491956.2462164.

61

https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/2491956.2462164

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Binary Lifting
	Intermediate Representations
	Use-Cases

	TrustNoJit (TNJ)
	Assembly Intermediate Representation (AIR)

	AArch64 Architecture
	Architecture Specification Language (ASL)

	Overview
	Design
	Lexing and Parsing
	AST Analysis
	Decoder Code Generation
	Lazy Subroutine Transpilation

	Lifter Code Generation
	Extension of AIR to Accommodate ASL Semantics
	Implementation Overwrites of ASL Subroutines
	Hybrid Transpilation Approach
	Basic Block Structuring

	Implementation
	Project Structure
	ASLi Integration and Interface Boundary
	Parser-Only Invocation
	Interface Design and JSON Serialization

	AST Structure and Serialization Pipeline
	Runtime Placement of Partial Evaluation
	Subroutine Transpilation
	Representation of ASL Data Types in AIR
	Uncertainty with ASL Decoding Match-Case Logic
	Transpilation Challenges from Rust’s Type Safety Features
	Exhaustiveness in Match-Case Logic
	Nested Mutable Borrow and InstructionBuilder Access

	Registers and Flags Configuration
	FP/SIMD and Other Unsupported Instructions

	Evaluation
	Practical Usability
	Decoding Coverage and Lifting Robustness (RQ1)
	Performance Bottleneck in Practical Use (RQ2)

	Performance and Structural Inefficiencies
	Lifting Output Metrics (RQ3)
	Sources of Inefficiency (RQ4)

	Future Work
	Additional Implementations
	Optimizations
	Loop Optimizations
	AIR Code Post-Processing
	ASL Code Pre-Processing
	Delegating Partial Evaluation to Codegen

	Related Work
	Manual Lifter Implementations
	Automatic Lifter Generation
	MRAS-Based Lifting

	Conclusion
	Abbreviations
	List of Figures
	Bibliography

